
Characterization of HPC Performance 
and HPC Reference Benchmarks 

July 16/17, 2001
Performance Workshop, Oakland



HPC Performance Reference

• To evaluate performance we need a 
frame of reference in the performance space

• This can be established by a set of 
benchmarks

• All we have right now is peak performance 
and Linpack 



HPC Performance Reference

• Such a reference should be designed to be 
useful: 
– Across several generations of different HPC 

architectures 
– For different application domains
– For a significant period of time



HPC Performance Reference

• Requirements:
– Architecture independent
– Scalable code and problem definition
– Stable performance characteristics

• We need to understand what are the critical 
aspects of algorithms which determine their 
performance 



Overview 

• Characterization of algorithmic features 
related to performance (“my 1st take”)

• Design principles for reference benchmarks



Characterizing Performance

• Characterize performance behavior of 
applications and algorithms independent from 
hardware!

• “Time to solution = 
Algorithmic Complexity 

+ Data Access Characteristics
+ Structure of Operations”



Algorithmic Complexity

• Theoretical simple: 
– # of Flop or
– # of Algorithmic Operations

• In Practice we often use hardware counts on 
specific systems to replace theoretic op-
counts

• Why do I mention it?
– It should not “be part” of a Reference Benchmark



Data Access

• Which features of data-access (DA) influence 
performance the most?
– (And by DA I mean local as well as global)

• Locality
– “Spatial locality of DA”
– “Temporal locality of DA”

• “Dimensionality of DA”



“Spatial Locality”

• “Can I use multiple contiguous stored data 
elements in succession?”
– (Is there a storage scheme which allows this?)
– Vector-length 
– Data-structure size
– Message length



“Spatial Locality”

• Hardware to exploit this:
– Load/Store (vector) pipelines
– Cache transfer in “lines”
– System networks with high bandwidth for long 

messages 



“Temporal Locality”

• “Can I re-use recently accessed data 
elements?”
– (Can I re-order my instructions for this?)

• Hardware:
– Caches
– (Register)
– Memory hierarchies in general
– Distributed memory in particular



(Qualitative) Locality Map



“Data Access Dimensionality”

• “How well can I restructure my data access to 
increase data locality?”

• Software:
– “Blocking” to exploit surface to volume effects
– Reordering of data to assemble long messages

• Essential so we can define a different concept 
of locality independent of problem size



Structure of Operations

• Operations can be distinguished by influence 
on control streams:
– Local Operations:

• FP, int etc

– Global Operations:
• Barrier synchronization
• Reduction
• Broadcast



Structure of Operations

• Local Operations
– “How many (local) Operations can I perform for 

each data access?”

• Global Operations
– “How many local Operations can we perform for 

each global operation?”



Reference Benchmarks

• Key Requirements:
– Architecture independent
– Scalable code and problem definition
– Stable performance characteristics



Architecture Independent

• Pencil and Paper
– Provide reference implementations

• Complex enough to reflect the influence of all 
system attributes of interest

• Simple enough to be usable and maintainable



Scalable Definition

• A benchmark useful for the ‘TOP500 class’ 
of systems for 10 years must bridge a range of 
100,000 in system size!

• Benchmarks should utilize resources on a 
variety of system sizes fully 

• Runtimes stable for several generations of 
systems 
– take algorithmic complexity out 



Stable Characteristics

• Performance attributes independent of 
problem size

• But for this we need to understand what the 
critical performance attributes are



Design Principles

• Benchmarks for ‘dimensions’
– Simple to design and understand
– Eliminates ‘interactions’ between dimensions
– Opens door for over-optimization

• Simulated application benchmarks
– Harder to design and understand
– More realistic performance (hopefully)



How many Benchmarks

• A few (2 or 3) well chosen benchmarks 
should capture the major performance 
differences for data access and CPU related 
performance aspects

• Additional benchmark are likely to simply 
add “noise” to the data



Key Features
• Only a small number of benchmarks
• Synthetic application benchmarks
• Well defined data access structures 
• Pencil and paper benchmark descriptions
• Reference implementations
• Scalable problem sizes
• Performance attributes independent of size
• Reasonable Run times



“More Specific Step”

• Research on characterization and 
development of benchmark need to go 
parallel (iterative)

• Basic strategy is to get a “prototype” of the 
first benchmark out in “6 month” and start 
collecting “feedback”

• To be of value this benchmark has to 
represent a class of “tough” problems



“More Specific Step”

• “To get the right decisions made in non-user 
space:”

• “That’s a hard problem”
• Repository
• Linked to TOP500
• Get measurements



“Questions”

• What are the most critical and relevant 
performance factors of our (scientific-HPC) 
applications?

• What benchmarks are there?
• What is a good class of algorithms for the 

first take?
• What infrastructure do we need?



Summary

• To evaluate different HPC architectures for 
different application domains we need a 
frame of reference in performance space

• A better understanding of performance 
determining factors of algorithms would 
greatly help the design of such benchmarks

• Establishing a stable performance reference 
would benefit the HPC community greatly 


